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ABSTRACT: Ordered phases of ABC star terpolymer melts are investigated using a generic reciprocal-
space implementation of the self-consistent field theory (SCFT) of polymers. The most important feature of
ABC star triblock terpolymers is that their three blocks are joined at one junction point. This distinct
topology of ABC star terpolymers constraints the junction points in one-dimensional lines in an ordered
phase, resulting novel microphase-separated morphologies such as tiling patterns. Two types of star triblock
terpolymers, with symmetric and asymmetric interaction parameters, are studied in detail. A variety of tiling
patterns in ABC star terpolymers have been predicted from the SCFT calculation and relevant phase
diagrams have been constructed. The predicted phase transition sequences from the SCFT calculations are in
qualitative agreement with experimental and Monte Carlo simulation results.

I. Introduction

Ordered phases formed by block copolymers have attracted
great attention in the last few decades. From a fundamental point
of view, ordering in block copolymersmelts or solutions provides
an ideal paradigm for the study of self-organization in soft
condensed matter.1 From a technological point of view, the rich
and fascinating ordered structures from block copolymers have
found applications ranging from thermoplastic elastomers and
high-impact plastics to pressure-sensitive adhesives, additives,
foams. Furthermore, the ordered morphologies of block copo-
lymers have potential applications in advanced technologies such
as information storage, drug delivery, and photonic crystals.2

Previous studies have firmly established that the self-assembly
of block copolymer melts is governed by a delicate balance of
the interaction energy and chain conformational entropy.3,4 For
the simplest case of linear AB diblock copolymers, the equilibri-
um morphologies are governed by three parameters: the volume
fraction of the A block, fA, the AB interaction parameter χ, and
the degree of polymerization, N. It is now well established that
five stable ordered phases can be formed by AB diblock copoly-
mers: alternating lamellae (L), hexagonally packed cylinders (C),
spheres packed in a body-centered cubic or face-centered cubic
lattice (S), double-gyroid network (G) and orthorhombic Fddd
network (O70).5,6

More complex block architectures, such as ABC triblock
terpolymers, offer opportunities to create novel microphase
morphologies. The richness of ordered structures in triblock ter-
polymers stems from a greatly enlarged parameter space. At the
mean-field level, there are at least five independent molecular
parameters determining the phase behavior of ABC triblock
terpolymers: two independent compositions, i.e., volume frac-
tions of A and B blocks, fA and fB, and three effective interac-
tion parameters, χABN, χBCN, and χACN. Furthermore, chain

topology, namely, linear versus nonlinear triblock terpolymers
(star-shaped, comb- and branched-type), or block sequence in
linear triblock terpolymers, can also play important roles in
determining the equilibrium structure. Consequently, muchmore
complex morphologies can be obtained in ABC triblock terpoly-
mers. To date more than three-dozen ordered structures have
been identified in ABC linear triblock terpolymers.7-9

One distinct feature of ABC star triblock terpolymer is that,
when the three blocks segregate, the topology of the chains forces
the junction points of the three blocks to be in one-dimensional
(1D) lines. In contrast, for ABC linear triblock terpolymers, the
junctions of the AB and BC blocks are confined in two-dimen-
sional (2D) surfaces in phase-separated structures. Because of the
topological constraint, ABC star triblock terpolymers exhibit
remarkably different phase behavior when compared with their
linear counterpart. In general, either two-dimensional or three-
dimensional (3D) orderedmorphologies can be found inABC star
triblock terpolymer melts. Particularly, if the volume fractions of
the three blocks are comparable, the junctionpointswillmost likely
be arranged on straight lines, resulting in 2D ordered structures. In
these 2D phases the three types of domains all assume the shape of
cylinders with polygonal cross sections. These morphologies are
therefore equivalent to 2D polygonal tiling patterns, or archime-
dean tiling.10 The tiling patterns can be denoted by a set of integers
[k, l, m, ...], indicating that a k-gon, an l-gon, and an m-gon, etc.,
meet consecutively at each vertex in the tiling pattern.

Experimental studies of star ABC terpolymers began to
emerge in past decade.11-15 In particular, Matsushita and co-
workers have conducted systematic studies on the morphologies
formed from (polyisoprene-polystyrene-poly(2-vinylpyridine))
(ISP) star terpolymers. Several ordered tiling patterns, such
as [6.6.6], [8.8.4], [12.6.4], etc., have been observed in star ISP
melts.11-14 Furthermore, transformation from one structure to
another was realized by varying the volume fraction of one
component while keeping the composition ratio of the others fixed.
Experiments by Abetz et al.15 on polystyrene-polybutadiene-
poly(2-vinylpyridine) (SBP) star terpolymers represent another
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typical system of star terpolymer, in which similar tiling struc-
tures were also observed.

Besides experimental works, computer simulations contribute
a lot to understanding phase behaviors of ABC star terpolymers.
Gemma and co-workers16 carried out Monte Carlo (MC) simu-
lations on ABC star terpolymers with equal interactions between
the three components. The phase behavior of ABC star terpoly-
mers with volume ratio of A:B:C = 1:1:x was investigated in
detail in strong segregation region. Tiling patterns including
[8.8.4], [6.6.6], [8.6.4; 8.6.6], [10.6.4; 10.6.4; 10.6.6], [12.6.4] were
obtained from the MC simulations. Huang et al.17 studied the
effects of composition and interaction parameter on the phase
behavior of ABC star terpolymers using dissipative particle
dynamics simulations. Tiling patterns, such as [8.8.4], [6.6.6],
[10.6.4;10.6.6], [10.6.4;10.8.4], were obtained when the three
blocks have comparable volume fractions.

Despite the large amount of previous experiments and simula-
tion studies onmicrophase separation of star terpolymer melts, a
comprehensive understanding of the phase behavior of ABC star
terpolymers is still lacking. Therefore, further systematic study on
the phases and phase transitions of star terpolymers is desirable.
It is now well established that self-consistent field theory (SCFT)
has provided a powerful theoretical framework for the study of
block polymer thermodynamics.18,19 Historically, SCFT of poly-
mers has its origin in the work ofEdwards in the 1960s.20Delicate
description of theoretical framework of SCFT for multicompo-
nent polymers (including block copolymers and polymer blends)
has been attributed toHelfand,Noolandi et al.21,22 The first exact
3D numerical solution of the SCFT equations was attributed
to the milestone work by Matsen and Schick, in which SCFT
equations were solved using spectral method.23 The availa-
bility of the exact numerical solutions allowed precise calcula-
tions of free energies and phase diagrams for block copolymers.
In parallel, real-space method was established, including the
Drolet-Fredrickson real-space method24 and split-step method
(or pseudospectral method) proposed by Rasmussen et al.25 The
capability and power of SCFT have been justified by fruitful
applications in prediction of ordered phases and construction of
phase diagrams of ABC linear triblock terpolymers.26,27

In this paper, we study phase behavior of ABC star terpoly-
mers using a generic reciprocal-space implementation of SCFT
equations.27 To simplify the calculation and in response to results
from previous experiments and simulations, the current SCFT
calculation is carried out only in 2D space, where 2D tiling
patterns are resulted. Various tiling patterns are predicted, and
phase diagrams are constructed.

II. Theory

A. Partition Function and Free Energy. Our model system
is composed of n ABC star terpolymers contained in a finite
volume V. The size of the three blocks are characterized by
their degree of polymerization, NA, NB, and NC. Then, the
overall molecular size of the star block terpolymer is char-
acterized by N=NA þ NB þ NC. The volume fractions of
the A-, B- and C-monomers are fA=NA/N, fB = NB/N, and
fC=1- fA- fB, respectively. For simplicity, theA, B, andC
monomers are assumed to have the same volume ν0 = 1/F0,
where the monomer density, F0, is defined as the number of
monomers per unit volume. The statistical segment lengths
of each component are denoted as bR (R=A, B, or C). The
conformation of the three blocks (subchains or arms) is
described by a space curve, Ri

R(s), which specifies the spatial
position of the s-th monomer of the R-block in the ith chain.
The three arms are connected by one monomer indexed by
s= 0. Therefore, the conformation of the A, B, and C arms
are specified by RA(s) with s ∈ [0, fA], R

B(s) with s ∈ [0, fB],
and R

C(s) with s ∈ [0, fC], respectively.

The partition function of the systemunder consideration is
given as a summation over all the chain conformations,

ZC∼
Z

DfRð•ÞgP0ðfRð•ÞgÞ
Y
r

δ½1-
X
R

φ̂RðrÞ�

exp½-Vðfφ̂gÞ=kBT � ð1Þ
where {R(•)} specifies the chain conformation, defined by
{R1(•), R2(•), ...,Rn(•)} (Ri(•) represents the conformation of
i-th chain), andP0({R(•)}) is the probability distribution of a
given chain conformation,

P0ðfRð•ÞgÞ ¼
Yn
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fp0ðRið•ÞÞδ½RA
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V({φ̂}) in eq 1 is the monomer interaction functional, which
is often written in terms of the Flory-Huggins interaction
parameters,

Vðfφ̂gÞ ¼ 1

2
kBT

X
R

X
β6¼R

χRβF0

Z
dr φ̂RðrÞφ̂βðrÞ ð4Þ

The dimensionless density distribution function of A-mono-
mer is defined as

φ̂AðrÞ ¼ N

F0

Xn
i¼1

Z fA

0

ds δðr-RA
i ðsÞÞ ð5Þ

and φ̂B and φ̂C have a similar expression.
The self-consistent field theory of block copolymers starts

with inserting a functional integral

1 ¼
Z

DfφRgδðφR -φ̂RÞ

into eq 1. This mathematical manipulation permits the
replacement of the density operator φ̂R(r) in eq 1 by the
density field φR(r). Then, the partition function can be
written as,

ZC∼
Z Y

R
½DfφRgDfωRg�

Y
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X
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φRðrÞ�
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where the functional FC is given by
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Here, the single-chain partition function is defined as:

QCðfωgÞ � 1
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Z
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ds ωRðRRðsÞÞ� ð8Þ
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We define the “forward” and “backward” end-integrated
chain propagators:

qRðr, sÞ �
Z

dr0
Z

DfRð•ÞgP0fRð•Þg

exp½-
Z fR

0

ds ωRðRRðsÞÞ�δ½r-RRðsÞ�δ½r0 -RRð0Þ� ð9Þ

q†Rðr, sÞ �
Z

dr0
Z

DfRð•ÞgP0fRð•Þg

exp½-
Z fR

0

ds ωRðRRðsÞÞ�δ½r-RRðsÞ�δ½r0 -RRðfRÞ� ð10Þ

Then they satisfy the differential modified diffusion equa-
tions

D
Ds
qRðr, sÞ ¼ 1

6
Nb2r2 -ωRðrÞ

� �
qRðr, sÞ ð11Þ

D
Ds
q†Rðr, sÞ ¼ -

1

6
Nb2r2 -ωRðrÞ

� �
q†Rðr, sÞ ð12Þ

Under the saddle-point approximation, minimization of free
energy functional leads to the following set of SCFT equa-
tions:

φAðrÞ ¼ 1

QC

Z fA

0

ds qAðr, sÞq†Aðr, sÞ

φBðrÞ ¼ 1

QC

Z fB

0

ds qBðr, sÞq†Bðr, sÞ

φCðrÞ ¼ 1

QC

Z fC

0

ds qCðr, sÞq†Cðr, sÞ

ωAðrÞ ¼ χABNφBðrÞþ χACNφCðrÞþηðrÞ

ωBðrÞ ¼ χABNφAðrÞþ χBCNφCðrÞþηðrÞ

ωCðrÞ ¼ χACNφAðrÞþ χBCNφBðrÞþηðrÞ ð13Þ
where η(r) is introduced to ensure the incompressibility
condition:

P
RφR(r) = 1. Solutions of this set of SCFT equa-

tions correspond to different phases of the system. Phase
diagrams can be constructed by comparing the free energy of
the different solutions.

Three different numerical methods, including the spectral
method,23 the real-space method,24 and the pseudospectral
method,25 have been established to solve the SCFT equa-
tions during the past fewdecades. The spectralmethod found
its applications in determination with high precision of free
energies of known ordered phases and thus construction of
phase diagrams. The real-space method and pseudospectral
method are powerful in searching unknown phases of block
copolymers. As an alternative, in the following, we solve the
SCFT equations of ABC star terpolymers using a generic
reciprocal-space method, which is a straightforward exten-
sion of our previous work.27

B. Reciprocal Formulation. The SCFT framework pre-
sented above is developed in real space. Mathematically,
any spatially varying functions can be represented in the
Fourier space. Therefore, the SCFT can be cast in the
reciprocal space. Specifically, the functions of interest within
the SCFT, such as the mean-field concentrations, the mean-
field potentials, and the end-integrated propagators, are
expanded in terms of Fourier series. The SCFT is then cast
in terms of the expansion coefficients.

Solving SCFT equations in reciprocal-space starts with ex-
panding the functions of interest using the plane waves, eiGr,
as the basis functions. The wave vector G is determined by
specific discretization of the reciprocal space. One useful
method to discretize the reciprocal space is to use periodic
boundary conditions applied to the computation box with
specific size and shape. Once the reciprocal vectors are
specified, any spatially varying functions of interest, ψR(r),
can be expressed in terms of Fourier series as

ψRðrÞ ¼
X
j

ψR, je
iGj 3 r ð14Þ

Here, we only discuss cases in a rectangular computation
box.28 In this case the wave vectorG is defined by G= 2π(h/
Dx, k/Dy, l/DZ, where Dx, Dy, Dz are the sizes of the
rectangular box, and h, k, l are integers. Thus, a reciprocal
wave vector can be represented by a set of integers (h, k, l). In
SCFT calculations, the wave vectorsG are ordered such that |
G| forms a nondecreasing series, therefore the first wave
vector is G1 ¼ 0

F
.

Then, the modified diffusion equations, eqs 11 and 12, are
rewritten in reciprocal-space as

DqR, iðsÞ
Ds

¼ -
X
j

HRðGi,GjÞqR, jðsÞ ð15Þ

Dq†R, iðsÞ
Ds

¼
X
j

HRðGi,GjÞq†R, jðsÞ ð16Þ

with the initial conditions

q
†
R, iðfRÞ ¼ δGi,G1

, q
†
β, iðfβÞ ¼ δGi,G1

, qγ, ið0Þ

¼
X
j

q
†
R, jð0Þ

X
k

q
†
β, kð0ÞδGi,Gj þGk

ð17Þ

where the Hamiltonians are

HRðGi,GjÞ ¼ 1

6
Nb2Gi

2δGi,Gj
þ

X
k

ωR, kðsÞδGi,Gj þGk
ð18Þ

The solution to the above first-order linear ordinary differ-
ential equation is given by

qR, iðsÞ ¼
X
j

TR, ijðsÞqR, jð0Þ ð19Þ

where TR(s) = exp[-HRs] is a transfer matrix. Because the
Hamiltonian H is an Hermitian matrix, diagonalization of
matrix H can be performed, HR = URDRUR

† , where the ele-
ments of the diagonal matrix DR, dR,k � DR,kk, are real
eigenvalues ofHR, and the columns ofUR are the normalized
eigenvectors of HR.
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The transfer matrix can be expressed as TR(s) = URexp-
[-DRs]UR

† , with its elements

TR, ijðsÞ ¼
X
k

UR, ik exp½-dR, ks�U†
R, kj ð20Þ

Starting from the initial conditions of the coefficients of
the “backward” end-integrated chain propagators

q
†
R, iðfRÞ ¼ δGi,G1

ð21Þ

the coefficients for the “backward” end-integrated chain
propagators expanded in terms of the eigenvalues and
eigenfunctions are obtained as,

q
†
R, iðsÞ ¼

X
j

UR, ij

expð-dR, jðfR -sÞÞU†
R, i1 for star R, 0esefR ð22Þ

Because of the topological constraint that three chemically
distinct chains are connected into a common junction (s=0)
in ABC star terpolymers, specific initial conditions qA,i(0),
qB,i(0), qC,i(0) for solving the ‘forward’ end-integrated chain
propagators equations must be satisfied

qA, ið0Þ ¼ P
j

q
†
B, jð0Þ

P
k

q
†
C, kð0ÞδGi,Gj þGk

qB, ið0Þ ¼ P
j

q†C, jð0Þ
P
k

q†A, kð0ÞδGi,Gj þGk

qC, ið0Þ ¼ P
j

q
†
A, jð0Þ

P
k

q
†
B, kð0ÞδGi,Gj þGk

ð23Þ

Then, we get the “forward” chain propagators,

qR, iðsÞ ¼
X
j

X
k

UR, ik

expð-dR, ksÞU†
R, kjqR, jð0Þ for arm R, 0esefR ð24Þ

The density profiles are written as

φR, i ¼
1

QC

X
j

X
k

Z fR

0

ds qR, jðsÞq†R, kðsÞδGi,Gj þGk
ð25Þ

The component density coefficients are also expressed in
terms of the eigenvalues and eigenvectors

φR, i ¼
1

QC

X
j

X
k

δGi,Gj þGk

X
l

X
m

UR, jmU
†
R,mlqR, lð0Þ

X
n

UR, knU
†
R, n1

e-dR,mfR -e-dR, nfR

dR, n -dR,m
ð26Þ

The free energy can be written as

FC

nkBT
¼ -ln QC þ

X
i

X
j

½χABNφA, iφB, j

þ χBCNφB, iφC, j þ χACNφA, iφC, j�δGi, -Gj
ð27Þ

with the single-chain partition function

QC ¼
X
i

X
j

qR, ið0Þq†R, jð0ÞδGi, -Gj
ð28Þ

The fields ωR,i are determined self-consistently from

ωA, i ¼ χABNφB, i þ χACNφC, i þηi

ωB, i ¼ χABNφA, i þ χBCNφC, i þηi

ωC, i ¼ χACNφA, i þ χBCNφB, i þηi

φA, i þφB, i þφB, i ¼ δGi,G1
ð29Þ

where the field η ensures the incompressibility of the system
and is determined by

ηi ¼
C1C2ðωA, i þωC, iÞþC2C3ðωA, i þωB, iÞþC1C3ðωB, i þωC, iÞ

2ðC1C2 þC2C3 þC1C3Þ
ð30Þ

with

C1 ¼ χAC þ χBC -χAB

C2 ¼ χAC þ χAB -χBC

C3 ¼ χAB þ χBC -χAC ð31Þ
C. Scattering Intensity. In this section, a brief description

of the method to compute the scattering intensity of an
ordered phase from the SCFT solutions is given. In general,
the scattering intensity of block copolymer microphases is
composed of two contributions. The first and main contri-
bution is from a set of Bragg peaks whose amplitudes can be
determined from the mean-field solution of SCFT. The
second contribution is from composition fluctuations that
are absent in the current SCFT studies. In what follows, we
investigate the scattering intensity from the first contribu-
tion. For ordered phases formed by ABC star triblocks, the
scattering intensity I(q) is given by

IðqÞ ¼
X

R¼A,B,C

X
β¼A,B,C

URðqÞU�
βðqÞφRðqÞφ�

βðqÞ ð32Þ

whereUR(q) is the atomic form factor of the component R.29

For simplicity, we assume that the atomic form factors for
each component are equal to a same constant. In eq 32, φR(q)
is the coefficient of R species for the wave vector q in
reciprocal-space, while φβ*(q) is the complex conjugate of the
coefficients of β species for the wave vector q in reciprocal-
space.

III. Results and Discussion

In the ordered phases of star triblock polymers, the most
distinct feature is that the junction points of the terpolymers are
forced to be along one-dimensional lines, as a result of the
topological constraint that the three blocks must meet at one
junction point. In general, the lines of junctions can be either
straight or curved, depending on the relative lengths of the three
arms and the interactions among them. The structure of the
ordered phases is basically determined by the arrangement of
these lines of junctions. When the lines of junctions are straight,
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typically found in relatively strong segregated system with
approximately equal volume factions of the blocks, 2D phases
or tiling patterns are formed. When the lines of junctions are
curved, complex 3D phases are obtained. In previous experi-
mental and simulation studies, much attention has been focused
on 2D tiling patterns. Motivated by these previous studies, the
main focus of this paper is on tiling patterns formed by ABC star
terpolymers, therefore all calculations are carried out in 2D space.
Each calculation starts with a random guess of the solution,
then a relaxation method is applied until the maximum changes
of the field coefficient at each iteration are reduced to 10-4

(corresponding to a free energy change of 10-6).30 All SCFT
calculations are carried out in single unit cell. For a given phase,
its free energy is minimized with respect to the box parameters
(Dx, Dy, all in units of Rg). Specifically, the box parameters,
Dx and Dy, are tuned independently in the range 3.0-10.8.

In all reciprocal-space calculations 151 basis functions are
used. In principle, the accuracy of the reciprocal-space method is
determined by the number of basis function used. To clarify
whether 151 basis functions in the reciprocal-space method are
sufficient to achieve quantitative accuracy,we have calculated the
free energies of a few typical phases in ABC star terpolymers
using both generic reciprocal-space method and Matsen-Schick
method. The relative differences in free energy are below 1% in
weak to intermediate segregation region, although the errors
increase with higher interaction parameter. For cases of χN =
30.0 in present work, the differences are within 0.2%, which
provides adequate accuracy for screening phases.

The spatial resolution is also determined by the number of
basis functions used.According to eq14, in 2D space, integer h (k)
in wave vectorG=2π(h/Dx, k/Dy) can be viewed as the number
of period of basis functions in length Dx (Dy). Consequently, a
basis functionwithG=2π(h/Dx, k/Dy) has the ability to resolute
structural change on the length scale of Dx/2h (Dy/2k) in the
x-direction (y-direction). Therefore, the highest values of h, k
determine the degree of spatial resolution. In our 2D calculations,
151 basis functions are used, which means the largest value of
h and k in all basis functions can be 9 and 5, respectively. As a
result, spatial resolution is estimated to be on the scale of Dx/18,

Dy/10; we believe this is enough to represent a unit cell of tiling
patterns for the purpose of screening phases in intermediate
segregation region.

(I). Two-Dimensional Tiling Patterns. Before presenting
the detailed results, it is useful to introduce the notations. In
what follows, AxByCz represents the ABC star terpolymers
with a composition ratio of A:B:C= x:y:z.When the lengths
of the star-arms are long and approximately equal to each
other, the star terpolymers tend to self-assemble into parallel
cylinders with polygonal cross sections, which can be char-
acterized as 2D tiling patterns. As mentioned in the Intro-
duction, the tiling patterns can be represented by a set of
integers, [k, l, m, ...]. The integers indicate that the k-gon,
l-gon, m-gon, etc., meet consecutively at each vertex. Exam-
ples of different tiling patterns found in ABC star terpoly-
mers and their integer designations are shown in Figure 1.
The first pattern is designated as [6.6.6] because each vertex
in this pattern is surrounded by three hexagonal polygons.
Similarly the second and third patterns are designated as
[8.8.4] and [12.6.4], respectively. The fourth pattern repre-
sents a more complex case because it possesses two types of
vertices; one is surrounded by 8-gon, 6-gon, and 4-gon,
whereas the other is formed by an 8-gon and two 6-gons.
Consequently, this pattern is designated as [8.6.4;8.6.6].
Similarly, the fifth pattern has three types of vertices and it
is in turn designated as [10.6.4;10.6.4;10.6.6], and the sixth
pattern in Figure 1 is termed [8.6.4;8.8.4;12.6.4;12.8.4].

In the present study, a number of ordered 2D morpholo-
gies (tiling patterns) have been obtained from the SCFT
calculations. In what follows, a brief description of these
phases is given first. Detailed discussions on the phase
behavior of ABC star triblock terpolymers are presented
later.

(1) [6.6.6]: This pattern has the same structure as the
honeycomb structure and it is a typical ordered
phase of ABC star terpolymers. In this pattern, the
three components exhibit hexagonal microdomains
and the pattern has a 3-fold symmetry. This struc-
ture is an example of noncentrosymmetric phases.

Figure 1. Ordered phases of ABC star triblock terpolymers obtained using SCFT with Fourier-space method. The structures shown are schematics
that have been reconstructed from the nonzero Fourier weights of the density distribution functions ofmonomers A, B, andC, denoted by blue, green,
and red colors.

http://pubs.acs.org/action/showImage?doi=10.1021/ma902735t&iName=master.img-000.jpg&w=300&h=244
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(2) [8.8.4]: The unit cell of this pattern contains two
octagonal domains formed by two different arms
and one 4-coordinated domain formed by the third
arm. It should be noted that the two octagonal
microdomains do not need to have the same size,
and the 4-coordinated microdomains can deviate
from squares. Details of these microdomains are
determined by the volume fractions of the three
blocks.

(3) [8.6.4;8.6.6]: In this pattern, two types of 8-coordi-
nated domains formed by the longest arm (the
C-block) are surrounded by domains formed alter-
natively by the other two arms (the A and B blocks).
TheAandBblocks form two types ofmicrodomains
with different shapes and sizes, i.e., the 4- and
6-coordinated polygons. The unit cell of this phase
is nonprimitive, composed of one 4-coordinated
A-domain, two 6-coordinated B-domains and two
types of 8-coordinated C-domains.

(4) [10.6.4;10.6.4;10.6.6]: In this pattern, the longest
arms (C-blocks) form ten-coordinated domains,
which are surrounded alternatively by A and B
microdomains. An interesting feature of the A and
B domains is that they represent two types of micro-
structures with different shapes and sizes. We note
that this pattern is also a noncentrosymmetric phase.

(5) [8.6.4;8.8.4;12.6.4;12.8.4]: For this pattern, the long-
est blocks form two types of domains: 12-coordi-
nated polygons and 8-corrdinated polygons. On the
other hand, microdomains formed by the shortest
blocks have rectangular sections but with different
sizes. Similarly, the blocks with intermediate-length
form two types of polygons with different sizes,
6- and 8-coordinated polygons.

(6) [12.6.4]: In this phase, the longest blocks are sur-
roundedby 12microdomains of the other twoblocks
arranged alternatively. One of the shorter blocks
form nearly hexagonal polygons, while the other
blocks form rectangular structure.

(7) L þ C: In this pattern, the longest block (i.e., C
block) forms lamellar layers, whereas the two short-
er blocks (i.e., A and B blocks) form cylinders with
rectangular cross-section and arranged alternatively
between C lamellae.

(8) L3: In this pattern, lamellae formed by the shortest
blocks are sandwiched in between two lamellae
formed by the other two components.

A. Symmetric Interaction Parameters. In order to highlight
the influence of composition on the self-assembled equilib-
riummorphologies, we first investigate the phase behavior of
a model ABC star terpolymer with symmetric interaction
parameters (χABN = χBCN = χACN = 30.0) and equal sta-
tistical segment lengths (bA = bB = bC). Because the incom-
patibility between the different blocks is relatively large, we
expect that cylindrical phases or tiling patterns will form in
this model terpolymer.

A one-dimensional phase map of the star terpolymer
A1.0B1.0Cx as a function of x is shown in Figure 2, in which
three colors, blue, green and red, are used to represent the A,
B, and C blocks, respectively. The increment of the volume
fraction fA (or fB) in the phase diagram is 0.001. Equilibrium
phases are assigned by comparing the free energies of the
candidate structures listed above. With the increase of fC
from 0.210 to 0.500 (0.53< x<2.02), phase transformation
occurs in the sequence of [8.8.4], [6.6.6], [8.6.4;8.6.6],
[10.6.4;10.6.4;10.6.6]. A detailed description, explanation,

and comparison with relevant results from MC simulations
are presented below.

When the volume fraction of the C-block is in the range
0.210e fCe 0.280 (or 0.53< x<0.79), the pattern [8.8.4] is
found to be stable. In this structure, the microdomains
formed by either A or B blocks are octagonal with equal
size, while the C-domains display square-like sections. These
results are in good agreement with the observation fromMC
simulation by Gemma et al.,16 in which the [8.8.4] cylinders
were found to appear in the region 0.37e xe 0.70.However,
this tiling pattern has not been observed experimentally at
present time.

When x is increased to values larger than 0.79, the SCFT
predicts that the honeycomb-like morphology ([6.6.6] tiling
pattern) becomes stable. The honeycomb tiling is a charac-
teristic noncentrosymmetric structure for ABC star triblock
terpolymers. This structure is found to be stable in a wide
region of 0.79e xe 1.28 (0.280e fC e 0.390), in agreement
with the MC simulation result 16, in which [6.6.6] cylinders
were found in the range 0.80 e x e 1.20.

The tiling pattern [8.6.4;8.6.6] becomes stable when 1.28
ex e 1.62 (0.390 e fC e0.450). Similar structure has been
predicted in region of 1.50 e x e 1.75 in previous MC
simulations.16

For larger values ofx (1.62exe 2.02, 0.450e fCe 0.500),
the [10.6.4;10.6.4;10.6.6] tiling pattern becomes the stable
phase. The same pattern was found to be stable by MC
simulations in this region (x ≈ 2.00).16

The L þ C structure becomes stable in the region of x >
2.02. However previous MC simulations predicted that the
L þ C pattern is located at larger values of x: 3 e x e 5.

Since in most cases of Gemma et al.’s simulation, χN=54
was used while we chose a lower χN value (χN = 30) to
reduce the number of basis function needed, the reasonably
good agreement between SCFT calculation andMC simula-
tion reflects that phase behaviors of ABC star terpolymers
with symmetric interactions are not sensitive to the change of
interaction parameters in the intermediate segregation re-
gion. The discrepancy of the stability region for LþC phase
may result from different interaction parameters used in
SCFT and MC. Furthermore, Gemma et al.’s MC simula-
tions were carried out in 3D space, in addition to 2D tiling
patterns, interesting 3D morphologies were found at higher
interaction parameters, including lamella þ sphere (χN >
100), perforated layers, columnar piled disk (χN= 77) and
lamellae in sphere (χN ≈ 100). Such 3D structures will
compete for stability with the L þ C phase, which may also
cause large discrepancy with the prediction of 2D SCFT.

The phase behavior of ABC star triblock terpolymers with
equal interaction parameters χABN= χBCN= χACN= 30.0
is summarized in a phase diagram shown in Figure 3. The
phase diagram is constructed by comparing the free energy of

Figure 2. Phase behavior of an idealized A1.0B1.0Cx star triblock
terpolymer with symmetric interactions, χABN = χBCN = χACN =
30.0, and with equal statistical segment lengths for each block. The
structures shown are schematics that have been reconstructed from the
nonzero Fourier weights of the density distribution functions of mono-
mers A, B, and C, denoted by blue, green, and red colors.
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the different candidate structures using SCFT calculation
with an increment of the volume fractions (fA, fB, fC) of 0.001.
In order to focus on the tiling patterns ofABC star polymers,
the SCFT calculation is carried out for star terpolymers with
compositions located near the center of the phase diagram,
where the three star blocks have comparable lengths. Near
the three edges of the triangle phase diagram, where one of
the three arms is much shorter than the others, the ABC star
terpolymers would exhibit phases typically formed from
diblock copolymers. The phase diagram shown in Figure 3
is 3-fold symmetric due to symmetric interaction parameters
used. A hexagonal region in the center of triangle phase
diagram, in which the volume fractions of three species are
nearly equal, is occupied by the tiling pattern [6.6.6]. Two
types of tiling patterns, [8.6.4;8.6.6] and [8.8.4], are found
near the [6.6.6] region.More complex tiling patterns, such as
[10.6.4;10.6.4;10.6.6], [12.6.4], and [8.6.4;8.8.4;12.6.4;12.8.4],
appear in regions where the volume fraction of one block is
relatively larger than the other two blocks.

B. Asymmetric Interaction Parameters. In this section, we
proceed to discuss the phase behavior of ABC star triblock
terpolymers with asymmetric interaction parameters, largely
motivated by experimental results on ISP star triblock
terpolymers from Matsushita and co-workers.11-14 In a
series of investigations, three groups of ISP star terpolymers
with fixed length ratio of two arms, I1.0S1.0Px,

11-13

I1.0S1.8Px,
14 and I1.0SxP2.0,

14 were studied and many inter-
esting microphase-separated structures have been observed,
including the cylindrical phases (tiling patterns) of [6.6.6],
[8.8.4], [10.6.4;10.6.4;10.6.6], [12.6.4], [3.3.4.3.4], and
[8.6.4;8.6.6]. Many of these tiling patterns have been dis-
cussed in previous section. In order to make a meaningful
comparison of the SCFT and experimental results, the
interaction parameters are chosen so that they are appro-
priate for the ISP terpolymers. Although accurate values of
the Flory-Huggins parameters for the ISP system are not
available in the literature, qualitatively the interaction
strengths are known to follow the order χIS ≈ χSP < χIP.
In what follows we choose χISN = χSPN = 25.0, χIPN =
37.0 to model the ISP system. Following the experiments by
Matsushita et al., we examine the phase behavior of the

I1.0S1.0Px series of star triblock terpolymers. The resulting
SCFT phase diagram is shown in Figure 4 with an increment
of volume fraction fA of 0.01.

With the increase of fC, the ordered stable microphase
changes from [8.8.4]1 to [8.8.4]2 then to [8.6.4;8.6.6] and
finally to [12.6.4]. We note that two types of [8.8.4] tiling
patterns, [8.8.4]1 and [8.8.4]2, are obtained for the A1.0B1.0Cx

star terpolymers with χABN = χBCN = 25.0, and χACN =
37.0. Obviously, the coordination number of C-domains is
proportional to the value of x, increasing from 4, to 8, and
then to 12 when x changes from 0.5 to 2.0. Compared to the
case with symmetric interaction parameters, the asym-
metric interactions between the three species lead to re-
markable changes in the phase behavior. For example, the
[6.6.6] tiling pattern now becomes metastable, and a pre-
viously metastable candidate [12.6.4] emerges as a stable
one. Furthermore, in the phase diagram the stable area of
each phase is also significantly changed. For asymmetric
star polymers, the stable region of the [8.8.4] phase is greatly
enlarged.

For star triblock terpolymers with shorter C-arms (0.50e
x e 0.86), a typical phase denoted as [8.8.4]1 is formed
(Figure 4). Although in the phase diagram a broad region
is covered by the [8.8.4]1 phase, this tiling pattern has not
been observed in experiments. Instead, the [6.6.6] pattern
was observed for I1.0S1.0P0.7. In our studies, for x≈ 0.86, the
pattern [6.6.6] is found to be ametastable phasewith a higher
free energy density.

In a large region of 0.94 e x e 1.33, the [8.8.4]2 tiling
pattern becomes a stable phase. In the [8.8.4]2 phase, the
majority C-blocks form the 8-coordinated domains, which
are surrounded by four B-block 4-polygons and four do-
mains of A-blocks with 8-coordinations. Because of the
larger interaction parameter between components A and
C, B/C interface dominates the morphology. In contrast,
the [6.6.6] pattern stays as a stable phase in this region for star
terpolymers with symmetric interactions. The asymmetric
interactions, however, drives the [6.6.6] pattern into a
metastable one in this region. In the experiments,11,12 the
ISP star terpolymer with arm-length ratio 1:1:1.2 exhibits a
similar [8.8.4]2 phase. For I1.0S1.0P1.2, the blocks with equal-
lengths, I and S, form octagonal polygons and rectangular
domains, respectively, while the majority P-blocks form
domains with 8-coordination.

Increasing the C-volume fraction (x ≈ 1.45) leads to a
stable [8.6.4;8.6.6] pattern, while the morphologies of [8.8.4],
[10.6.4;10.6.4;10.6.6], and [12.6.4] compete the stability with
[8.6.4;8.6.6] in this region.

An interesting morphology, the [12.6.4] pattern, is ob-
served in the region of 1.57 e x e 2.00, whereas this
morphology is a metastable phase for the star triblock

Figure 3. Partial phase triangle for a model ABC star triblock terpo-
lymers with equal statistical segment lengths for each block and with
equal interaction parameters, χABN = χBCN = χACN = 30.0. The
ordered phases obtained are indexed as numbers: 1, [6.6.6]; 2, [8.6.
4;8.6.6]; 3, [8.8.4]; 4, [10.6.4;10.6.4;10.6.6]; 5, [12.6.4]; 6, [8.6.4;8.8.4;
12.6.4;12.8.4].

Figure 4. Equilibrium ordered morphologies of A1.0B1.0Cx star tri-
block terpolymer with asymmetric interactions, χABN = χBCN =
25.0, and χACN = 37.0, and with equal statistical segment lengths for
each block. The structures shown are schematics that have been
reconstructed from the nonzero Fourier weights of the density distribu-
tion functions of monomers A, B, and C, denoted by blue, green, and
red colors.
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with symmetric interactions. In the experiments, the same
structure was also observed in ISP star terpolymers with
similar composition ratio of I:S:P = 1:1:1.9.11,12 In this
region, the SCFT calculations indicate that the patterns
[10.6.4;10.6.4;10.6.6] and [8.6.4;8.6.6] are metastable phases.

(II). Scattering of Tiling Patterns. Identifying the symme-
tries of ordered phases obtained from theoretical calcula-
tions or simulations is a key step in the prediction of ordered
structures self-assembled fromblock copolymers. In the real-
space method of SCFT, density profiles of microphases are
explicitly obtained. However it is still difficult to identify the
symmetry group of the complex structures from these density
profiles. This is especially true when the SCFT solutions
correspond to defected structures typically obtained in large
computational boxes. In the reciprocal-space method, the
SCFT solutions are in the form of Fourier coefficients as a
function of the wave vectors. For an ordered structure the
wave vectors with nonzero coefficients correspond to the
reciprocal lattice vectors of the structure. Therefore, it is
straightforward to identify the symmetry of the ordered
phase once the solutions of the SCFT equations are obtained
in the reciprocal space. Detailed description of how to
transform the wave vectors with nonzero coefficients into
scattering patterns that can be compared with experiments is
given previously in eq 32. In particular, Bragg diffraction
occurs at the reciprocal lattice vectors, at which the scatter-
ing intensity exhibits scattering peaks.

As a simple example, the scattering intensity of a [6.6.6]
tiling pattern is shown in Figure 5(a) as a function of the
wavenumber q (in unit of Rg

-1). Bragg diffraction occurs at
relative wave vectors

q=q� ¼ 1,
ffiffiffi
3

p
,

ffiffiffi
4

p
,

ffiffiffi
7

p

where q* is the wave vector of the first-order peak. Note that
each calculated scattering peak splits into several subpeaks,
which is mainly due to the imperfect match between the
computational lattice parameters and period of the ordered
phases. For a typical [6.6.6] tiling pattern occurring at Dx=
5.0Rg,Dy=3.0Rg, Figure 5b shows that the 2D pattern of the
Bragg peaks, located at (qx=( kx,qy=( ky), (qx=( 2kx,
qy=0), (qx=0, qy=( 2ky), (qx=( 3kx, qy=( ky), (qx=(
kx, qy=( 3ky), (qx=( 2kx, qy=( 2ky), (qx=( 4kx, qy=0),
(qx=( 4kx, qy=( 2ky), (qx=( 5kx, qy=( ky), etc., where
kx=2π/ Dx, ky=2π/Dy. The magnitudes of the first scatter-
ing vectors, |q10| and |q01|, are found to be 2.51Rg

-1. The
corresponding d-spacings, d(10) and d(01), can be calculated to
be 2.50 Rg, using d=2π/|q|. From these values, the real-
space lattice vectors, |a| and |b|, are found to be 2.89 Rg, and
the angle between the two real lattice vectors is 120�. This

calculated scattering pattern is in good agreement with the
experimentally observed one.12

Figure 6a shows the scattering profile of the [8.8.4] tiling
pattern. The scattering peaks are located at

q=q� ¼ 1,
ffiffiffi
2

p
,

ffiffiffiffiffi
4,

p ffiffiffi
5

p
,

ffiffiffi
8

p

where q*is the peak position of the first-order scattering.
This scattering intensity profile exhibits a 4-fold symmetry,
consistent with the [8.8.4] structure. From the SCFT results,
it is found that this pattern occurs atDx = 5.40Rg andDy=
5.20Rg, resulting in |q01|=|q10|=1.68Rg

-1, |a|=|b|=3.75Rg,
and the angle between two real lattice vectors is 90�.
Figure 6b illustrates the 2D scattering pattern of such
[8.8.4] tiling pattern, in which the 01, 02, 11, 12, and 22
reflections are clearly observed. This characteristic of the
[8.8.4] pattern is consistent with the experimental results.12

Finally the scattering profile of the [12.6.4] tiling pattern is
shown in Figure 7(a). The scattering profile has peaks at

q=q� ¼ 1,
ffiffiffi
3

p
,

ffiffiffi
4

p

These ratios indicate a structure of 6-fold symmetry. For a
typical [12.6.4] structure occurring at Dx =7.00Rg, Dy =
4.20Rg, Figure 7(b) shows the 2D scattering pattern, where
the Bragg peaks appear at (qx=( kx, qy=( ky), (qx=( 2kx,
qy=0), (qx=0, qy=( 2ky), (qx=( 3kx, qy=( ky), (qx=( 4kx,
qy=0) and (qx=( 2kx, qy=( 2ky), etc., where kx=2π/Dx,
ky=2π/Dy. The amplitudes of the scattering vectors, |q10|
and |q01|, are 1.80 Rg

-1 and 1.74 Rg
-1, respectively. Conse-

quently, the angle between the two scattering vectors is
59�, indicating an angle of 121� between the two real lattice
vectors. The amplitudes of the two real lattice vectors, |a| and

Figure 5. (a) Scattering intensity of pattern [6.6.6] plotted as a function
of wavevectors q (in unit of Rg

-1). The inset is the corresponding
schematic structure of [6.6.6] pattern. (b) 2-Dimensional scattering
pattern of [6.6.6] tiling pattern.

Figure 6. (a) Scattering profile of pattern [8.8.4]. The inset represents
the corresponding schematic structure of [8.8.4] pattern. (b) Corre-
sponding 2-dimensional scattering pattern.

Figure 7. (a) Scattering profile of [12.6.4] pattern. The inset is the
corresponding schematic structure of [12.6.4] pattern. (b) Correspond-
ing 2-dimensional scattering pattern.
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|b|, are found to be 4.08Rg and 5.60Rg, while the d-spacings,
d(01) and d(10), are 3.60Rg

-1 and 3.50Rg
-1, respectively.

IV. Conclusions

The phase behavior of ABC star-shaped terpolymers has been
investigated by self-consistent field theory (SCFT) in reciprocal-
space. Motivated by previous experimental and simulation stu-
dies, attention has been focused on the ordering of 2D phases or
tiling patterns self-assembled from ABC star terpolymers. The
SCFT calculations predict that a variety of tiling morphologies,
including the [8.8.4], [6.6.6], [8.6.4;8.6.6], [10.6.4;10.6.4;10.6.6],
[12.6.4], and [8.6.4;8.8.4;12.6.4;12.8.4] tiling patterns, can occur in
ABC star terpolymers. Except for the [8.6.4;8.8.4;12.6.4;12.8.4]
tiling pattern, these ordered phases have been observed in
previous experiments and simulations.

Two typical ABC star terpolymers with symmetric and asym-
metric interaction parameters are investigated. For the terpoly-
mers with symmetric interactions, a triangle phase diagram is
constructed and the phase behavior of the A1.0B1.0Cx star
terpolymers is presented in detail. The phase transition is pre-
dicted to occur in a sequence of [8.8.4], [6.6.6], [8.6.4;8.6.6],
[10.6.4;10.6.4;10.6.6] with increasing volume fraction fC from
0.21 to 0.50 (0.53 e x e 2.02).

For the star terpolymers with asymmetric interactions appro-
priate to ISP star polymer, a series of star terpolymers with
composition A1.0B1.0Cx has been examined in detail. Significant
changes in the phase behavior have been observed. As the volume
fraction of the C-block is increased, the equilibrium ordered
phases are predicted to occur in the order of: [8.8.4]1, [8.8.4]2,
[8.6.4;8.6.6], and [12.6.4].

Furthermore, the scattering intensity profiles of three ordered
phases, the [6.6.6], [8.8.4], and [12.6.4] tiling patterns, are calcu-
lated from our mean-field solutions. Good agreement between
the calculated scattering patterns with those observed in experi-
ments has been reached.

To simplify the calculation and focusing on the tiling patterns,
the SCFT calculation in this paper was carried out only in 2D
space; however, extension to 3D space is straightforward and
without any limitation. In fact, various interesting 3D ordered
morphologies ofABC star terpolymers have been collected, using
the present Fourier-space method. The ordering of ABC star
terpolymers in 3D space will be the main topic of our next
publication.
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